An Excursion to the Kolmogorov Random Strings

Harry Buhrman*

CWI. PO Box 94079, 1090 GB Amsterdam, The Netherlands

and

Elvira Mayordomo†

Dept. Ingenieria Informática, Univ. de Zaragoza, María de Luna 3, 50015 Zaragoza, Spain Received September 20, 1995; revised September 24, 1996

We study the sets of resource-bounded Kolmogorov random strings: $R_t = \{x \mid C^{t(n)}(x) \geqslant |x|\}$ for $t(n) = 2^{n^k}$. We show that the class of sets that Turing reduce to R_t has measure 0 in EXP with respect to the resource-bounded measure introduced by Lutz. From this we conclude that R_t is not Turing-complete for EXP. This contrasts with the resource-unbounded setting. There R is Turing-complete for co-RE. We show that the class of sets to which R_t bounded truth-table reduces, has p_2 -measure 0 (therefore, measure 0 in EXP). This answers an open question of Lutz, giving a natural example of a language that is not weakly complete for EXP and that reduces to a measure 0 class in EXP. It follows that the sets that are $\leq \frac{\rho}{bn}$ -hard for EXP have p_2 -measure 0. C 1997 Academic Press

1. INTRODUCTION

One of the main questions in complexity theory is the relation between complexity classes, such as P, NP, and, EXP. It is well known that $P \subseteq NP \subseteq EXP$. The only strict inclusion that is known is the one between P and EXP. It is conjectured however that all of the inclusions are strict.

In the late sixties and early seventies Cook [Coo71] and Levin [Lev73] discovered a number of *NP*-complete problems. Since then many people studied the complete problems of this and other complexity classes (see for example [GJ79, BH77, Mah82, Ber77]). From the point of view of complexity theory, the usefulness of these complete problems is that in order to separate *P* from *NP* one only has to focus on one particular complete problem and prove for this problem that it is not in *P*. Similar considerations are valid for *EXP* since this class also exhibits complete problems.

* Part of this research was done while visiting the Univ. Politècnica de Catalunya in Barcelona. E-mail: buhrman@cwi.nl. Partially supported by the Dutch Foundation for Scientific Research (NWO) through NFI Project ALADDIN, under Contract NF 62-376.

[†] E-mail: elvira(a) prometeo.cps.unizar.es. Partially supported by the EC through the Esprit BRA Program (Project 7141, ALCOM II) and through the HCM Program (Project CHRX-CT93-0415, COLORET Network).

However, Kolmogorov [Lev94] suggested, even before the notions of *P*, *NP*, and *NP*-completeness existed, that lower bound efforts might best be focused on sets that are relatively devoid of simple structure. That is, the *NP*-complete problems are probably too structured to be good candidates for separating *P* from *NP*. One should rather focus on the intermediate less structured sets that somehow are complex enough to prove separations. As a candidate of such a set he proposed to look at the set of what we call nowadays the resource-bounded Kolmogorov random strings.

In this paper we try to follow this type of approach. We study the sets R_i of strings that are Kolmogorov random with respect to time bounds t of the form $t(n) = 2^{n^k}$: $R_i = \{x \mid C^{n(n)}(x) \ge |x|\}$. A variant of this set was studied before by [BO94] with respect to instance complexity. A more restricted version of this set, namely R_p for p a polynomial, was studied by Ko [Ko91].

It is well known that the time unbounded version of this set, i.e., the co-RE set of truly Kolmogorov random strings, is Turing-complete for co-RE [Mar66]. In this paper however we will show that the resource bounded version is not Turing-complete for EXP, supporting Kolmogorov's intuition at least for EXP. We actually show something stronger. We prove that the sets that Turing reduce to R_t have measure 0 in EXP with respect to the resource-bounded measure introduced by Lutz [Lut92]. Hence R_t is not even weakly Turing-complete.

Applying the results of Kautz and Miltersen [KM94] we get that R_i , is not Turing-hard for NP relative to a random oracle.

These results show that R_i mirrors almost none of the structure of EXP and NP. Furthermore, by the results of Ambos-Spies *et al.* [ASTZ94] it follows that sets that have the same property, i.e., sets that are not weakly complete, have measure 0 in EXP and hence are rare and atypical.

On the other hand, it is not hard to see that R_t is P-immune, i.e., it has no infinite subset in P, and thus is complex enough to figure as the set Kolmogorov had in mind.

We also examine the sets that R_t reduces to, i.e., $\{A \mid R_t \leq_r^p A\}$, for some reducibility r. We prove that for \leq_{htt}^p reductions this class of sets has p_2 -measure 0, therefore also has measure 0 in EXP (in fact, this result is established for any set having infinitely many hard instances, in the sense of instance complexity). As a consequence of these reflections we establish that the class of sets that are \leq_{htt}^p -hard for EXP have p_2 -measure 0. (This last result was improved for complete sets by Ambos-Spies et al. in [ASNT94].)

We have thus obtained a natural example of a non-weakly complete set for EXP that is not in P, answering an open question of Lutz (verbal communication). Juedes and Lutz [JL93] note the existence of sets in E whose upper and lower \leq_m^p -spans are both small. We extend this result by showing that R_i is also a set for which both the lower and upper \leq_{ht}^p -spans have measure 0 in EXP, which in the lattice induced by \leq_{htt}^p -reductions means that R_i lives in a nowhere land, with almost nothing below or above it.

2. PRELIMINARIES

See [BDG88, BDG90] for standard notation and basic definitions on complexity classes and reductions.

Let s_0 , s_1 , s_2 , ... be the standard enumeration of the strings in $\{0, 1\}^*$ in lexicographical order. Let λ denote the empty string. Given a string $w \in \{0, 1\}^*$, let C_w be the set

$$\mathbf{C}_w = \{ x \in \{0, 1\}^\infty \mid w \text{ is a prefix of } x \}.$$

Given a sequence x and $n \in \mathbb{N}$, x[0...n-1] denotes the finite prefix of x that has length n. Given a set X, $\mathcal{P}(X)$ denotes the power set of X. \mathbb{Q} denotes the set of rational numbers.

We will use the *characteristic sequence* χ_L of a language L, defined as follows:

$$\chi_L \in \{0, 1\}^{\infty}$$
 and $\chi_L[i] = 1$
iff s_i belongs to L .

By identifying a language with its characteristic sequence we identify the class of languages over $\{0, 1\}$ with the set $\{0, 1\}^{\infty}$ of all sequences.

Consider the random experiment in which a language $A \subseteq \{0, 1\}^*$ is chosen probabilistically, using an independent toss of a fair coin to decide membership of each string in A. Given a property of languages Π , let $\Pr_A[\Pi(A)]$ denote the probability that property Π holds for A when A is chosen in this fashion.

We will use the following notation for exponential time complexity classes: $E = DTIME(2^{O(n)})$ and $EXP = DTIME(2^{n^{O(1)}})$.

We use the function classes $p = \bigcup_{k \in \mathbb{N}} DTIMEF(n^k)$ and $p_2 = \bigcup_{k \in \mathbb{N}} DTIMEF(2^{\log(n)^k})$.

Next we include the main definitions of measure in *EXP* and *E*. For a complete introduction to resource-bounded measure see [Lut92] and [May94].

Intuitively, the measure in EXP is a function $\mu: \mathcal{P}(EXP) \to [0, 1]$ with some additivity properties, whose main purpose is to classify by size criteria the subclasses of EXP. In this sense, the smallest classes are those X for which $\mu(X) = 0$ and the largest are those having $\mu(X) = 1$.

We only define measure 0 and measure 1 in *EXP* because we are always interested in classes that are closed under finite variations, and from a resource-bounded generalization of the Kolmogorov 0-1 law [May94] these classes can only have measure 0 or measure 1 in *EXP*, if they are measurable at all.

DEFINITION 1. A martingale is a function $d: \{0, 1\}^* \to \mathbf{Q}$ satisfying

$$d(w) = \frac{d(w0) + d(w1)}{2}$$

for all $w \in \{0, 1\}^*$.

DEFINITION 2. A martingale d is successful for a language $x \in \{0, 1\}^{\infty}$ iff

$$\lim_{n\to\infty} \sup d(x[0...n]) = \infty.$$

For each martingale d, we denote the class of all languages for which d is successful as S[d], that is

$$S[d] = \{x \mid \limsup_{n \to \infty} d(x[0...n]) = \infty\}.$$

DEFINITION 3. A class $X \subseteq \{0, 1\}^{\infty}$ has p_2 -measure 0 (denoted by $\mu_{p_2}(X) = 0$) iff there exists a martingale $d \in p_2$ such that, $X \subseteq S[d]$.

A class $X \subseteq \{0, 1\}^{\infty}$ has p_2 -measure 1 (denoted by $\mu_p(X) = 1$) iff X^c has p_2 -measure 0.

A class $X \subseteq \{0, 1\}^{\infty}$ has measure 0 in EXP iff $X \cap EXP$ has p_2 -measure 0. This is denoted by $\mu(X | EXP) = 0$.

A class $X \subseteq \{0, 1\}^{\infty}$ has measure 1 in EXP iff X^c has measure 0 in EXP. This is denoted by $\mu(X \mid EXP) = 1$.

The measure in EXP just defined is known to be non-trivial because of the Measure Conservation Theorem [Lut92], stating that EXP does not have p_2 -measure 0.

Similarly, p-measure and measure in E are defined as follows

DEFINITION 4. A class $X \subseteq \{0, 1\}^{\infty}$ has p-measure 0 (denoted by $\mu_p(X) = 0$) iff there exists a martingale $d \in p$ such that, $X \subseteq S[d]$.

A class $X \subseteq \{0, 1\}^{\infty}$ has *p*-measure 1 (denoted by $\mu_p(X) = 1$) iff X^c has *p*-measure 0.

A class $X \subseteq \{0, 1\}^{\infty}$ has measure 0 in E iff $X \cap E$ has p-measure 0. This is denoted by $\mu(X|E) = 0$.

A class $X \subseteq \{0, 1\}^{\infty}$ has measure 1 in E iff X^c has measure 0 in E. This is denoted by $\mu(X|E) = 1$.

The following is an immediate consequence of the definitions

PROPOSITION 5. If X has p-measure 0 then X has p_2 -measure 0. If X has p-measure 0 then X has measure 0 in E. If X has p_2 -measure 0 then X has measure 0 in EXP.

Next we state an important property of measure in EXP and E, the σ -additivity property, that will be an important tool in the proof that certain classes have measure 0.

DEFINITION 6. A class X is a p_2 -union (p-union) of the p_2 -measure 0 (p-measure 0) classes $X_0, X_1, X_2, ...$ iff

$$X = \bigcup_{i=0}^{\infty} X_i$$

and there exists a single constant $k \in \mathbb{N}$ such that for every i, there is a martingale d_i with $X_i \subseteq S[d_i]$, such that d_i is computable in time $2^{(\log n)^k}$ (in time n^k).

LEMMA 7 [Lut92]. If X is a p_2 -union (p-union) of p_2 -measure 0 (p-measure 0) classes, then X has p_2 -measure 0 (p-measure 0).

Let \leq_r^p be a reducibility and A be a set. $P_r(A) = \{B | B \leq_r^p A\}$. We will call $P_r(A)$ the lower span of A. $P_r^{-1}(A) = \{B | A \leq_r^p B\}$ is called the upper span of A.

DEFINITION 8. Given a reducibility \leq_r^p , we say that a language $A \in EXP$ is \leq_r^p -weakly complete for EXP if $P_r(A)$ does not have measure 0 in EXP.

Weak completeness, studied in [Lut94, ASTZ94, JL94], is a resource-bounded measure generalization of the classical notion of complete language. In [ASTZ94], Ambos-Spies *et al.* prove that the class of many-one weakly complete sets for *EXP* has measure 1 in *EXP*, which contrasts with the fact that the class of complete languages for the same class has measure 0. That is, complete languages are rare in *EXP* while weakly complete languages are typical.

Very recently, an elegant proof of Regan, Sivakumar and Cai [RSC95] showed that if $P_r(A)$ has measure 1 in EXP, then A is \leq_r^p -complete. Therefore, for A weakly complete but not complete it must be the case that $P_r(A)$ is not measurable in EXP.

We will use resource bounded Kolmogorov complexity. We will only give an intuitive definition here; see [LV93] for precise definitions. For t a time bound:

$$C^{t(n)}(x) = \min\{ |M| \mid M(\lambda) = x \text{ in time } t(|x|) \}.$$

We also will use the notion of instance complexity but also only give an intuitive definition; see [LV93, OKSW94] for exact definitions. A Turing machine M is consistent with a set A if for all x, M(x) outputs YES, NO or? and furthermore, if M(x) outputs YES (NO) then $x \in A(x \notin A)$. The t-bounded instance complexity with respect to a set A and a string x is:

 $IC^{t(n)}(x:A) = \min\{|M| | M \text{ is a } t(n)\text{-bounded Turing-machine consistent with } A \text{ and deciding } x\}.$

We study the sets $R_i = \{x \mid C^{n(n)}(x) \ge |x|\}$, for $t(n) = 2^{n^k}$, for some $k \ge 2$. Observe that R_i is decidable in time $2^n t(n)$, therefore $R_i \in EXP$. A variant of this this set was studied before in [BO94], we will use the following version of Theorem 3.2 in [BO94], concerning the instance complexity of the strings in R_i :

Theorem 9. There exists $n_1 \in \mathbb{N}$, $c_1 > 0$, such that for every $x \in R_I$, $|x| \ge n_1$,

$$IC^{2n}(x:R_T) \geqslant |x| - c_1$$
.

We also study the set $R_l = \{x \mid C^{l(n)}(x) \ge |x|\}$, for $l(n) = 2^{kn}$, $k \ge 3$. For this set we also have

Theorem 10. There exists $n_2 \in \mathbb{N}$, $c_2 > 0$, such that for every $x \in R_1$, $|x| \ge n_2$,

$$IC^{2n}(x:R_t) \geqslant |x| - c_2$$
.

3. MAIN RESULTS

In this section we prove our main results. Let in the following t be a function of the form $t(n) = 2^{n^k}$ for some $k \ge 2$, and let l be $l(n) = 2^{kn}$ for $k \ge 3$. The next theorem shows that R_t is not weakly Turing-complete for EXP.

THEOREM 11. $P_{\rm T}(R_t)$ has measure 0 in EXP.

Proof. We start by showing that every \leq_T^p -reduction to R_i can be done such that, on every input of the form 0^n , every query length is less than n.

Let N be a Turing machine that decides R_i . Let A be such that $A \leq_T^n R_i$ via machine M. Fix $n \in \mathbb{N}$ and denote as $\{q_1, q_2, ..., q_m\}$ the queries in the computation of $M(R_i, 0^n)$ (in order of appearance). Assume that there is a $q \in \{q_1, q_2, ..., q_m\}$ such that $|q| \geq n$ and $q \in R_i$. Let q_i be the first such q to appear. We can generate q_j from 0^n , $R_i^{< n}$ (that is, an algorithm for R_i) and j, because we can simulate the computation of $M(R_i, 0^n)$ up to obtaining the jth query by answering to queries of length smaller than n according to R_i and answering NO to queries of length at least n. The time used in this generation of q_j is at most $p(n) \cdot 2^{n-1} \cdot t(n-1)$, for p a polynomial depending on M. Let n_0 be such

that for each $n \ge n_0$, $p(n) \cdot 2^{n-1} \cdot t(n-1) < t(n)$ and $|M| + |N| + \log n + \log(p(n)) < n$. Then for $n \ge n_0$ if there is a query q in the computation of $M(R_i, 0^n)$ with $q \in R_i$ and $|q| \ge n$ then there exists q_j in R_i such that $|q_j| \ge n$ and $C^i(q_j) < n$. This would contradict the definition of R_i , so no such q can exist.

Thus for each $n \ge n_0$, if there is a query q for $M(R_t, 0^n)$ such that $|q| \ge n$, we can assume that $q \notin R_t$. Thus there is a polynomial time machine M' such that $A = L(M', R_t)$ and for every $n \in \mathbb{N}$, all queries in the computation of $M'(R_t, 0^n)$ have length less than n.

Next we define the classes

 $X_i = \{ A \mid A \leq _T^n R_i \text{ via } M_i \text{ and for all } n, \text{ all queries on } 0^n \text{ have length less than } n \},$

where $\{M_i | i \in \mathbb{N}\}$ is a presentation of all polynomial time oracle Turing machines, and $\{q_i | i \in \mathbb{N}\}$ are the corresponding polynomial time bounds. By the property of \leq_T^p -reductions to R_t that we just proved, we know that $P_T(R_t) \subseteq \bigcup_i X_i$. This allows us to show that $P_T(R_t)$ has measure 0 in EXP by using the p_2 -union lemma.

For each $i \in \mathbb{N}$ we define d_i a martingale witnessing that X_i has p_2 -measure 0. For each $i \in \mathbb{N}$, let n_i be such that $q_i(n) < 2^n$ for each $n \ge n_i$. Let $i \in \mathbb{N}$, $w \in \Sigma^*$, $b \in \{0, 1\}$.

$$\begin{aligned} d_i(w) &= 1 & \text{if} & |s_{|w|}| < n_i \\ d_i(wb) &= d_i(w) & \text{if} & s_{|w|} \notin \{0\}^*. \\ d_i(wb) &= 2 \cdot d_i(w) & \text{if} & s_{|w|} \in \{0\}^*, |s_{|w|}| \geqslant n_i, \\ & \text{and} & M_i(R^{<|s_{|w|}|}, s_{|w|}) = b. \\ d_i(wb) &= 0 & \text{if} & s_{|w|} \in \{0\}^*, |s_{|w|}| \geqslant n_i, \\ & \text{and} & M_i(R^{<|s_{|w|}|}, s_{|w|}) \neq b. \end{aligned}$$

By definition d_i is a martingale. To compute $d_i(w)$ we need to compute $R_i^{<\log(|w|)}$ and simulate M_i on inputs of the form 0^n , for $n \le \log(|w|)$. Thus d_i can be computed in time $t(\log(|w|)) \cdot |w|^2$, and this bound does not depend on i.

Next we show that for each $i \in \mathbb{N}$, $X_i \subseteq S[d_i]$. Fix $i \in \mathbb{N}$ and $A \in X_i$. By the definition of X_i it is clear that for each $n \in \mathbb{N}$, $M_i(R_i^{< n}, 0^n) = A(0^n)$, i.e., $A[2^n - 1] = A(s_{2^n - 1}) = M_i(R_i^{< |s_{2^n - 1}|})$, $s_{2^n - 1}$. Thus by the definition of d_i , for each $n > n_i d_i (A[0...2^n - 1]) = 2 \cdot d_i (A[0...2^n - 2])$ and if m is not of the form $2^n - 1$ then $d_i (A[0...m]) = d_i (A[0...m - 1])$. Thus $\lim_m d_i (A[0...m]) = \infty$ and $A \in S[d_i]$.

The proof is finished by applying the p_2 -union lemma (Lemma 7).

With the same proof technique we can show the next theorem for R_l . This time the Kolmogorov complexity argument implying that reductions to R_l are length increasing can be done without computing membership in R_l at all,

because queries are nonadaptive and there are only a polynomial number of them.

THEOREM 12. $P_{tt}(R_l)$ has pleasure 0, hence measure 0 in E.

As a corollary of the proof of Theorem 11 we have that the theorem holds for any infinite subset of R_{ℓ} .

COROLLARY 13. Let $A \in EXP$ be an infinite subset of R_i . Then

$$\mu(P_{\mathrm{T}}(A) | EXP) = 0.$$

Let $A \in E$ be an infinite subset of R_1 . Then

$$\mu_{p}(P_{tt}(A)) = \mu(P_{tt}(A) | EXP) = 0.$$

As an immediate consequence of Theorems 11 and 12 we have the following:

COROLLARY 14. R_i is not Turing-complete for EXP and R_i is not truth-table-complete for EXP.

Also Theorem 11 shows that R_i is not weakly Turing-complete for EXP, and Theorem 12 shows that R_i is not weakly truth-table-complete for EXP or E. Note that weak completeness for EXP does not necessarily imply weak completeness for $E \lceil JL94 \rceil$.

Corollary 14 contrasts with the situation in the recursion-theoretic setting. Let $R = \{x \mid C(x) \ge |x|\}$. It is not hard to see that \overline{R} is effectively simple (see [Odi89] for a definition). Moreover in [Mar66] it is shown that every effectively simple set is Turing-complete for RE from which it follows that R is Turing-complete for co-RE. Kummer [Ku96] has recently shown that R is truth-table-complete for co-RE.

Moreover R_i is a *natural* example of a Turing-incomplete set in EXP - P. R_i is not in P since it is P-immune, this can be proven with basically the same argument that shows that \overline{R} is effectively simple.

Lutz has proposed to study the reasonableness and consequences of the hypothesis 'NP does not have measure 0 in EXP' (see [LuMa94]). We have the following corollary

COROLLARY 15. If NP does not have measure 0 in EXP, then R_i is not Turing-hard for NP.

Applying the results of Kautz and Miltersen [KM94] we get the following:

COROLLARY 16. Relative to a random oracle, R_i is not Turing-hard for NP.

Note that R_i relative to an oracle can be defined using a relativization of resource bounded Kolmogorov complexity.

It would be interesting to connect our results with those obtained in [Ko91] for the set R_p , with p a polynomial. In this case R_p is in co-NP. Ko [Ko91] shows that there exists an oracle relative to which R_p is incomplete for co-NP and not in P.

Another application comes from the results in [ASTZ94]. They show that the majority of EXP, i.e. a subclass of sets with measure 1, is weakly complete. It follows thus that R_t is atypical in EXP.

Next we will turn our attention to the upper span of R_r —the class of sets that R_r reduces to. We start by proving a general result about the \leq_{k-n}^p -upper span of any set having infinitely many hard instances, in the following sense.

DEFINITION 17. Let $f: \mathbb{N} \to \mathbb{N}$. A set C has infinitely many f(n)-hard instances if there exist infinitely many $x \in \{0, 1\}^*$ such that,

$$IC^{f(n)}(x:C) \geqslant |x|$$
.

THEOREM 18. Let $k \in \mathbb{N}$, let C be a set in E that has infinitely many $n^{\log n}$ -hard instances. Then $P_{k-\mathfrak{tt}}^{-1}(C)$ has p-measure 0.

Proof. We start by showing that every $\leq_{k=n}^{p}$ -reduction from C, there are infinitely many $x \in \{0, 1\}^*$ on which there are useful queries of length greater than |x|/(5k). We say that a query is useful if the answer to that query is necessary to compute the answer to the oracle computation, even if the answers to smaller queries are known.

Let A be such that $C \leq_{k-n}^p A$ via machine M. Fix $x \in \{0, 1\}^*$ and denote as $\{q_1, q_2, ..., q_k\}$ the set of queries in the computation of M(A, x), in lexicographical order. Let $Q_M(A, x) = \{q_1, q_2, ..., q_j\}$, for $j \leq k$, be such that the answers to the queries $\{q_1, q_2, ..., q_j\}$ determine M(A, x), but the answers to the queries $\{q_1, q_2, ..., q_{j-1}\}$ don't. Assume that $Q_M(A, x) \subseteq \{0, 1\}^{\leq |x|/5k}$. We are going to

Assume that $Q_M(A, x) \subseteq \{0, 1\}^{\leq |x|/5k}$. We are going to construct a short program that is consistent with C and decides membership of x.

The program consists basically of a codification of both $Q_M(A, x)$ and $Q_M(A, x) \cap A$, therefore the program size is at most $4k^{|x|/5k}$. On an input y, the program simulates the computation of M(A, y) by answering only to queries that belong to $Q_M(A, x)$ according to $Q_M(A, x) \cap A$. If queries out of $Q_M(A, x)$ are needed, the program halts with undefined output, otherwise it outputs the result of the simulation. The time used by this program on input x is at most p(|x|), for p a polynomial depending on M. Let n_0 be such that for each $n \ge n_0$, $p(n) < n^{\log n}$. Then for each $x \in L$, with $|x| \ge n_0$, if $Q_M(A, x) \subseteq \{0, 1\} \le |x|/5k$ then $IC^{n \log^n}(x: C) \le 4k |x|/5k < |x|$.

Since C has infinitely many $n^{\log n}$ -hard instances, this implies that there exist infinitely many $x \in \{0, 1\}^*$ such that $Q_M(A, x) \not\subseteq \{0, 1\}^{\leq |x|/5k}$.

Next we define the classes

$$X_i = \{A \mid C \leq_{k-1}^p A \text{ via } M_i\},$$

where $\{M_i|i\in\mathbb{N}\}$ is a presentation of all k-tt-polynomial-time oracle Turing machines, and $\{q_i|i\in\mathbb{N}\}$ are the corresponding polynomial time bounds. It is clear that $P_{k-\mathrm{tt}}^{-1}(C)\subseteq\bigcup_i X_i$. This allows us to show that $P_{k-\mathrm{tt}}^{-1}(C)$ has p-measure 0 by using the p-union lemma.

For each $i \in \mathbb{N}$, let n_i be such that $q_i(n) < 2^n$ for each $n \ge n_i$. For each $w \in \{0, 1\}^*$ and $i \in \mathbb{N}$, let x(w, i) be the minimum $x \in \{0, 1\}^*$ such that $|x| \ge n_i$ and for every $B \in \mathbb{C}_w$, $Q_{M_i}(B, x) \not\subseteq \{s_0, ..., s_{|x|-1}\}$. That is, x(w, i) is the minimum input for which queries out of the prefix w of the oracle are needed.

For each $i \in \mathbb{N}$ we define d_i a martingale witnessing that X_i has p-measure 0. Let $i \in \mathbb{N}$, let $w \in \{0, 1\}^*$, $b \in \{0, 1\}$.

If
$$|x(w, i)| \ge 5k \lfloor \log(|w|) \rfloor$$
 then $d_i(wb) = d_i(w)$.
If $|x(w, i)| < 5k \lfloor \log(|w|) \rfloor$ then $d_i(wb) = d_i(w)$.

$$\cdot 2 \cdot \frac{\Pr_{B}[(M_{i}(B, x(w, i)) = C(x(w, i))) \land (\mathbf{C}_{wb} \sqsubseteq B)]}{\Pr_{B}[(M_{i}(B, x(w, i)) = C(x(w, i))) \land (\mathbf{C}_{w} \sqsubseteq B)]}$$

By definition d_i is a martingale. To compute $d_i(w)$ we need to find x(w, i), simulating M_i on at most all strings in $C^{<5k \lfloor \log(|w|) \rfloor}$, thus d_i can be computed in time $2^{c5k \lfloor \log(|w|) \rfloor}$. $|w|^2$, for c > 0 a constant such that $C \in \mathsf{DTIME}(2^{cn})$, and this bound does not depend on i.

Let us show that for each $i \in \mathbb{N}$, $X_i \subseteq S[d_i]$. Fix $i \in \mathbb{N}$ and $A \in X_i$. By definition of X_i , there exist infinitely many $m \in \mathbb{N}$ such that $|x(A[0...m], i)| < 5k \lfloor \log(|A[0...m]|) \rfloor$.

We define $\{a_n | n \in \mathbb{N}\}$, an increasing sequence of natural numbers, as follows:

$$a_{1} = \min\{m \mid |x(A[0...m], i)| < 5k \lfloor \log(|A[0...m]|) \rfloor\}$$

$$a_{n+1} = \min\{m \mid m > a_{n}, x(A[0...m], i) \neq x(A[0...a_{n}], i)$$
and $|x(A[0...m], i)| < 5k \lfloor \log(|A[0...m]|) \rfloor\}$,
for each $n \in \mathbb{N}$.

We show that for each $n \in \mathbb{N}$,

$$d_i(A[0...a_{n+1}-1]) \geqslant \frac{2^k}{2^k-1} d_i(A[0...a_n-1]).$$

Let $n \in \mathbb{N}$. We define the string

$$x = x(A[0...a_n], i) = x(A[0...a_{n+1}-1], i).$$

Notice that for each $n \in \mathbb{N}$,

$$Q_{M_i}(x, A) \subseteq \{s_0, ..., s_{a_{n+1}-1}\}.$$

Notice also that, by definition of x, $Q_{M_i}(x, A) \not\subseteq \{s_0, ..., s_{a_n} - 1\}$, and therefore

$$\Pr_{B}[(M_{i}(B, x) = C(x)) \land (\mathbb{C}_{A[0, a_{n+1}]} \sqsubseteq B)] < 1.$$

By definition of d_i ,

$$\begin{split} d_i(A[0...a_{n+1}-1]) &= d_i(A[0...a_n-1]) \cdot 2^{a_{n+1}-a_n}. \\ &\stackrel{j=a_{n+1}-1}{\prod} \frac{\Pr_B[(M_i(B,x)=C(x)) \wedge (\mathbb{C}_{A[0...j]}\sqsubseteq B)]}{\Pr_B[(M_i(B,x)=C(x)) \wedge (\mathbb{C}_{A[0...j-1]}\sqsubseteq B)]} \\ &= d_i(A[0...a_n-1]) \cdot 2^{a_{n+1}-a_n}. \\ &\cdot \frac{\Pr_B[(M_i(B,x)=C(x)) \wedge (\mathbb{C}_{A[0...a_{n+1}-1]}\sqsubseteq B)]}{\Pr_B[(M_i(B,x)=C(x)) \wedge (\mathbb{C}_{A[0...a_{n+1}-1]}\sqsubseteq B)]} \end{split}$$

Since $A \in X_i$ and $Q_{M_i}(x, A) \subseteq \{s_0, ..., s_{a_{n+1}-1}\},\$

$$\Pr_{B}[(M_{i}(B, x) = C(x)) \land (C_{A[0, a_{n+1}, 1]} \sqsubseteq B)] = 2^{-a_{n+1}}.$$

Thus

$$d_{i}(A[0...a_{n+1}-1]) = d_{i}(A[0...a_{n}-1]).$$

$$\frac{2^{-a_{n}}}{\Pr_{B}[(M_{i}(B,x) = C(x)) \land (C_{A[0...a_{n}-1]} \sqsubseteq B)]}$$

Also since

$$\Pr_{B}[(M_{i}(B, x) = C(x)) \land (\mathbb{C}_{A[0, a_{n-1}]} \sqsubseteq B)]$$

is smaller than one, and $M_i(B, x)$ depends only on a maximum of k bits of B, the values of

$$\Pr_{B}[(M_{i}(B, x) = C(x)) \land (\mathbb{C}_{A[0 \dots a_{n-1}]} \sqsubseteq B)]$$

can only be of the form $m \cdot 2^{-k} \cdot 2^{-a_n}$, for $m \in \{0, ..., 2^k - 1\}$. Thus

$$d_i(A[0...a_{n+1}-1]) \ge \frac{2^k}{2^k-1} \cdot d_i(A[0...a_n-1])$$

and $\lim_{m} d_i(A[0...m]) = \infty$.

The proof is finished by applying the p-union lemma (Lemma 7). ■

The following theorem is basically an application of the p_2 -union lemma to the previous result.

THEOREM 19. Let C be a set in EXP that has infinitely many $n^{\log n}$ -hard instances. Then $P_{\text{btt}}^{-1}(C)$ has p_2 -measure 0, therefore measure 0 in EXP.

For R_i and R_i we have the next corollary

COROLLARY 20. $P_{\text{bit}}^{-1}(R_i)$ has p_2 -measure 0. For each $k \in \mathbb{N}$, $P_{k-1}^{-1}(R_l)$ has p-measure 0.

Proof. Use Theorems 9, 10, 18, and 19.

This leaves us with a somewhat strange situation. The sets below R_i with respect to Turing reductions and the sets above R_i with respect to \leq_{bit}^p -reductions are few and far between.

The small span theorem of Juedes and Lutz [JL93] says that at least one of the lower and upper spans must have measure 0; formally, for every $A \in EXP$, either $P_{\rm m}(A)$ has measure 0 in EXP, or $P_{\rm m}^{-1}(A)$ has p_2 -measure 0. In fact what they prove is that for every $A \in EXP$, if $P_{\rm m}(A)$ does not have measure 0 in EXP, then $P_{\rm m}^{-1}(A)$ has p_2 -measure 0. These results were later proved for \leq_{htt}^p -reductions in [ASNT94], that is,

THEOREM 21 [ASNT94]. Let $A \in EXP$. If $P_{btt}(A)$ does not have measure 0 in EXP, then $P_{btt}^{-1}(A)$ has p_2 -measure 0.

Our results show that the converse of Theorem 21 is false, since $P_{\rm btt}^{-1}(R_i)$ has p_2 -measure 0 and $P_{\rm btt}(R_i)$ has measure 0 in *EXP*. (Juedes and Lutz proved in [JL93] that the converse of the many-one version of Theorem 21 is also false.) In fact we have seen that even a much weaker converse of Theorem 21 is false, since the following holds

COROLLARY 22. There exists $A \in EXP$ such that both $\mu_p(P_{\text{btt}}^{-1}(A)) = 0$ and $\mu_{p,2}(P_T(A)) = 0$.

For the case of measure in E, we have a similar consequence. From [ASNT94] we know that:

THEOREM 23 [ASNT94]. Let $A \in E, k \in \mathbb{N}$. If $P_{k-\mathfrak{tt}}(A)$ does not have measure 0 in E, then $P_{k-\mathfrak{tt}}^{-1}(A)$ has p-measure 0.

We have shown that the converse of Theorem 23 is false,

COROLLARY 24. There exists $A \in E$ such that both $\mu_p(P_{k-1}^{-1}(A)) = 0$ and $\mu(P_{11}(A) \mid E) = 0$.

Another corollary is:

COROLLARY 25. The class of sets that are \leq_{btt}^p -hard for EXP has p_2 -measure 0.

This corollary has been improved recently by Ambos-Spies *et al.* for the class of complete sets in [ASNT94], where they show that the class of sets that are \leq_{bn}^{p} -complete for E has measure 0 in E.

Results similar to those in this section can be proven for the case of space bounds instead of time bounds, by defining the set $RS_s = \{x \mid CS^{s(n)}(x) \ge |x|\}$.

THEOREM 26. There exists $A \in ESPACE$ such that both $\mu_{pspace}(P_{k-1})^{-1}(A) = 0$ and $\mu_{pspace}(P_{T}(A)) = 0$. There exists

 $A \in EXPSPACE$ such that both $\mu_{p_2 space}(P_{\text{bit}}^{-1}(A)) = 0$ and $\mu_{p_1 space}(P_{\text{T}}(A)) = 0$.

Here pspace and p_2 space-measure are defined similarly to p and p_2 -measure (see [Lut92]). Notice that there is a slight improvement with respect to the time bound case, here the Turing-lower span has pspace-measure 0.

As a last remark, the whole paper could have been written considering $R_i^e = \{x \mid C^{i(n)}(x) \ge |x|^e\}$, for $\varepsilon < 1$ a fixed positive constant.

4. CONCLUSIONS AND QUESTIONS

We studied the lower span of R, with respect to Turing reductions. We showed that this lower span has measure 0 in EXP. As a consequence we obtained that relative to a random oracle R, is not Turing-hard for NP. It would be interesting to connect these results to the set studied in [Ko91] and show that similar results are true with respect to the set studied there. We also studied the upper span of R, and showed that with respect to $\underset{hur}{\leqslant} p$ -reductions this upper span also has measure 0 in EXP. In fact, our proof shows that this upper span has p_2 -measure 0. If we could push these results up to polynomial-time truth-table reductions it would result in proving that $BPP \neq EXP$, since it is known ([TB91], [AS]) that for every $A \in BPP$, $P_{tt}^{-1}(A)$ has Lebesgue measure 1, and therefore this upper span can't have p_2 -measure 0.

ACKNOWLEDGMENTS

Both authors thank Jack Lutz for helpful remarks on the first version of this paper and Eric Allender and an anonymous referee for pointing out a mistake in the proof of the main theorems.

REFERENCES

- [AS] K. Ambos-Spies, unpublished.
- [ASNT94] K. Ambos-Spies, H-C. Neis, and S. A. Terwijn, Genericity and measure for exponential time, *in* "Proc. 19th International Symposium on Mathematical Foundations of Computer Science, 1994," Lecture Notes in Computer Science, Vol. 841, pp. 221-232, Springer-Verlag, New York/Berlin, 1994; also *Theoret. Comput. Sci.*, to appear.
- [ASTZ94] K. Ambos-Spies, S. A. Terwijn, and X. Zheng, Resource bounded randomness and weakly complete problems, in "Proc. 5th International Symposium on Algorithms and Computation, 1994," Lecture Notes in Computer Science, Vol. 834, pp. 369-377, Springer-Verlag, New York/Berlin, 1994; also *Theoret. Comput. Sci.*, to appear.
- [BDG88] J. Balcázar, J. Díaz, and J. Gabarró, "Structural Complexity, I," Springer-Verlag, New York/Berlin, 1988.
- [BDG90] J. Balcázar, J. Díaz, and J. Gabarró, "Structural Complexity, II," Springer-Verlag, New York/Berlin, 1990.
- [Ber77] L. Berman, "Polynomial Reducibilities and Complete Sets," Ph.D. thesis, Cornell University, 1977.

- [BH77] L. Berman and H. Hartmanis, On isomorphisms and density of NP and other complete sets, *SIAM J. Computing* 6 (1977), 305–322.
- [BO94] H. Buhrman and P. Orponen, Random strings make hard instances, *in* "Proc. Structure in Complexity Theory, 9th Annual Conference, 1994," pp. 217–222, IEEE Computer Society Press, New York; also *J. Comput. and System Sci.*, to appear.
- [Coo71] S. Cook, The complexity of theorem-proving procedures, in "Proc. 3rd ACM Symposium Theory of Computing, 1971," pp. 151–158.
- [GJ79] M. Garey and D. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," Freeman, San Francisco, 1979.
- [JL93] D. W. Juedes and J. H. Lutz, The complexity and distribution of hard problems, *SIAM J. Computing* **24** (1995), 279–295.
- [JL94] D. W. Juedes and J. H. Lutz, Weak completeness in E and E₂, Theoret. Comput. Sci. 143 (1995), 149–158.
- [K M94] S. M. Kautz and P. B. Miltersen, Relative to a random oracle NP is not small, in "Proc. Structure in Complexity Theory 9th Annual Conference, 1994," pp. 162–174, IEEE Computer Society Press, New York, 1994.
- [Ko91] K. Ko, On the complexity of learning minimum time-bounded Turing machines, *SIAM J. Computing* **20** (1991), 962–986.
- [Ku96] M. Kummer, On the complexity of random strings, in "Proc. 13th Symposium on Theoretical Aspects of Computer Science, 1996," Lecture Notes in Computing Science, Vol. 1046, pp. 25–36, Springer-Verlag, New York/Berlin, 1996.
- [Lev73] L. Levin, Universal sorting problems, *Probl. Pereduci Inform.* 9 (1973), 115–116 [in Russian].
- [Lev94] L. Levin, personal communication, 1994.
- [LV93] M. Li and P. M. B. Vitányi, "An Introduction to Kolmogorov Complexity and Its Applications," Springer-Verlag, New York/Berlin, 1993.
- [Lut92] J. H. Lutz, Almost everywhere high nonuniform complexity J. Comput. System Sci. 44 (1992), 220–258.
- [Lut94] J. H. Lutz, Weakly hard problems, SIAM J. Comput. 24 (1995), 1170-1189.
- [LuMa94] J. H. Lutz and E. Mayordomo, Cook versus Karp-Levin: Separating reducibilities if NP is not small, *Theoret. Comput. Sci.* 164 (1996), 141-163.
- [Mah82] S. Mahaney, Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J. Comput. System Sci. 25 (1982), 130–143.
- [Mar66] D. A. Martin, Completeness, the recursion theorem and effectively simple sets, *Proc. Am. Math. Soc.* 17 (1966), 838-842.
- [May94] E. Mayordomo, "Contributions to the Study of Resource-Bounded Measure," Ph.D. thesis. Universitat Politècnica de Catalunya, 1994.
- [Odi89] P. Odifreddi, "Classical Recursion Theory," Studies in Logic and the Foundations of Mathematics, Vol. 125, North-Holland, Amsterdam, 1989.
- [OKSW94] P. Orponen, K.-I Ko, U. Schöning, and O. Watanabe, Instance complexity, *J. Assoc. Comput. Mach.* 41, No. 1 (1994), 96–121.
- [RSC95] K. Regan, D. Sivakumar, and J.-Y. Cai, Pseudorandom generators, measure theory, and natural proofs, *in* "Proc. 36th Symposium on Foundations of Computer Science, 1995," pp. 26–35.
- [TB91] S. Tang and R. V. Book, Polynomial-time reducibilities and "Almost-all" oracle sets, *Theoret. Comput. Sci.* **81** (1991), 36–47.